If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+367=0
a = -3; b = 0; c = +367;
Δ = b2-4ac
Δ = 02-4·(-3)·367
Δ = 4404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4404}=\sqrt{4*1101}=\sqrt{4}*\sqrt{1101}=2\sqrt{1101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1101}}{2*-3}=\frac{0-2\sqrt{1101}}{-6} =-\frac{2\sqrt{1101}}{-6} =-\frac{\sqrt{1101}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1101}}{2*-3}=\frac{0+2\sqrt{1101}}{-6} =\frac{2\sqrt{1101}}{-6} =\frac{\sqrt{1101}}{-3} $
| 10x-3=2(4x+5) | | 1000(6x-10)=20(1760+100x) | | 2(n-3)+21=-3 | | 4x+3=2x+5+5x | | -9(y-3)=-4y+47 | | 3x+10+2x+15=10 | | m=7.50 | | 5x-27+117=7x+51 | | 35n-18=14n-4 | | 3(c+2)=5c-2 | | 4+3h-h-h=12 | | 1000(9x-10)=50(768+100x) | | 27x-140=32x-200 | | 6a+23=5(a+6) | | 14+2=-2(7x-8) | | 5x+6=7x+5-2x | | 5(6x+5)=3+8x | | 1.75=2x-2.5 | | x+.06x=29000 | | u^2-85u+324=0 | | -7x2+448=0 | | 1.75=2x-2.5÷10 | | X-23+x+(x/4)=562 | | 0.27x-140=32x-200 | | 2+3.50x=5x3.25X | | 5a-2=8a+7 | | -3x+5=-5x+2 | | (3/4x)+1/2=2 | | 18r-13r-5r+5r=15 | | 3(u-6)-6u=-12 | | 3(2x+6)=-45+33 | | 4n-34=2n |