If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+50=0
a = -3; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-3)·50
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*-3}=\frac{0-10\sqrt{6}}{-6} =-\frac{10\sqrt{6}}{-6} =-\frac{5\sqrt{6}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*-3}=\frac{0+10\sqrt{6}}{-6} =\frac{10\sqrt{6}}{-6} =\frac{5\sqrt{6}}{-3} $
| 2*6+2*x=2(6+3 | | 20-6a=2 | | 6t/9-22;t=60 | | 0.17x+0.4(x-5)=0.01(3x-3) | | 5c-3=c+5 | | 8y+12=68 | | 234=192-y | | X/3-x/4+x/5=34 | | 0.35a=8.4 | | -1-6(4p-1)=-115 | | 3/4x0=36 | | 19-2x=-6x+13 | | (2x-6)4=7 | | 19+3x/2-14=1 | | 12+3/5b+11-18=20 | | 4.6d=0.7 | | 2.4y=35.6 | | 4-x=0.48 | | 2(15-z)+5z=0 | | 3(-16)-2(2x-8)=10 | | 5+4(2-x)=17 | | .5a+1.5=10 | | 4m/8+3=5 | | 3x+82=-2 | | 5(w+5)=2w-6 | | 2=x–53 | | 2x+1/2x+7/x=x+7/x | | 1/3×n=15 | | 8+-2x=46 | | (y÷4)=16 | | 4h-14h+19h=-18 | | 21=20+r2 |