If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+7x+10=0
a = -3; b = 7; c = +10;
Δ = b2-4ac
Δ = 72-4·(-3)·10
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-13}{2*-3}=\frac{-20}{-6} =3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+13}{2*-3}=\frac{6}{-6} =-1 $
| 2x+(25+3x)=180 | | -7/9x+3=14 | | 23=2x=7x= | | x2-24=5x | | 5c+8+9+9+9+9=6 | | -12x+4(x-3)+7x=5x-18 | | 2d+58=90 | | –10f+8=–8f | | 7(a+9)=147 | | 3x+2x-25=300 | | 12x-72=`32 | | (1/3)n=10-n | | 2x+1+55+64=180 | | 400=25x+75 | | 7n+12=13n-16=6n | | 639=12x+375 | | 5e+3+39+28=180 | | 9u+5=8u-15 | | 20+17b=16-2+20b | | 7x+(20+x)=180 | | x(x-7)-18+2x=-11x+82+6x | | 57+h=90 | | 14h=13h+5 | | -3x+6.25=-1.75x+21 | | -1/2=-6/18h* | | 7-6q=-3-8q+2 | | x+x+10+2=18 | | 5t+15=50 | | -5x12-7x=-3(5x+8 | | 3x+7=20+10x | | 9x-5=37 | | 57×h=180 |