If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+7x=0
a = -3; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·(-3)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*-3}=\frac{-14}{-6} =2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*-3}=\frac{0}{-6} =0 $
| ((x+60)+(3x+10)=140x+2) | | (x+60)+(3x+10)=140x+2*102 | | ((x+60)+(3x+10)=140x+2)*102 | | (x+60)+(3x+10)=140x+2 | | (x+60)+(3x+10)=140x+4-4.5 | | 13+4n=29 | | (x+60)+(3x+10)=140x+4-5 | | (x+60)+(3x+10)=140x+4+6 | | (x+60)+(3x+10)=140x+4+5 | | (x+60)+(3x+10)=140x+4 | | x+60)+(3x+10)=140x+1) | | ((2x+60)+(3x+10)=140x+4) | | ((2x+60)+(3x+10)=140x+1.5) | | 9x+5.4=x+15 | | ((2x+60)+(3x+10)=140x+2)/6 | | x/6-1=8 | | ((2x+60)+(3x+10)=140x+2)/2 | | ((2x+60)+(3x+10)=140x+2 | | ((2x+60)+(3x+10)=140x+2) | | ((2x+60)+(3x+10)=140)*3,4)) | | ((2x+60)+(3x+10)=140)*3,4) | | ((2x+60)+(3x+10)=145) | | ((2x+60)+(3x+10)=144) | | ((2x+60)+(3x+10)=143) | | ((2x+60)+(3x+10)=142) | | ((2x+60)+(3x+10)=141) | | ((2x+60)+(3x+10)=140) | | ((2x+60)+(3x+9)=180) | | 6x–9x+18=3 | | Y=8.75x+780 | | ((2x+60)+(3x+10)=180) | | 20(1.3x-0.4)-3x=0.6(5x-10) |