If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+8x+16=0
a = -3; b = 8; c = +16;
Δ = b2-4ac
Δ = 82-4·(-3)·16
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*-3}=\frac{-24}{-6} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*-3}=\frac{8}{-6} =-1+1/3 $
| 2b=3b+50 | | 3b+50=2b | | -11x+9=1 | | -17x+5+14x-8=-27 | | 2-3(4a-2)=3(2a-6)-4/5a | | 6a-80=5a-53 | | 1.66x+4=-0.33+x | | 7n+8=5n-8=-2n+12= | | -3x2+8×-16=0 | | (5x-2)^4=48 | | 10w-60=4w | | 2y-41=3y-99 | | -3x2-17x-4=0 | | 3w-52=5w-92 | | (5x-2)^4-1-47=0 | | 8x+16=16+8x | | 5(7+7x)=385 | | 3(7.7)-16+11y-32=180 | | 3k–2k=1 | | 3(7.6)-16+11y-32=180 | | -9y-9=18 | | a+80=a | | 3(8)-16+11y-32=180 | | V(x)=80=(8-2x)(10-2x)(2x) | | x+28=3x-36 | | 1/3=x14 | | .p−12=18 | | 0.15(x+2,000)=33,300 | | 8x+16=8x-5 | | |0.04x-1|=6.08 | | 3x+10=3x+2= | | 20=5(x+12) |