If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -3y(6y + 4) + 2(3y + -10) = 0 Reorder the terms: -3y(4 + 6y) + 2(3y + -10) = 0 (4 * -3y + 6y * -3y) + 2(3y + -10) = 0 (-12y + -18y2) + 2(3y + -10) = 0 Reorder the terms: -12y + -18y2 + 2(-10 + 3y) = 0 -12y + -18y2 + (-10 * 2 + 3y * 2) = 0 -12y + -18y2 + (-20 + 6y) = 0 Reorder the terms: -20 + -12y + 6y + -18y2 = 0 Combine like terms: -12y + 6y = -6y -20 + -6y + -18y2 = 0 Solving -20 + -6y + -18y2 = 0 Solving for variable 'y'. Factor out the Greatest Common Factor (GCF), '-2'. -2(10 + 3y + 9y2) = 0 Ignore the factor -2.Subproblem 1
Set the factor '(10 + 3y + 9y2)' equal to zero and attempt to solve: Simplifying 10 + 3y + 9y2 = 0 Solving 10 + 3y + 9y2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 1.111111111 + 0.3333333333y + y2 = 0 Move the constant term to the right: Add '-1.111111111' to each side of the equation. 1.111111111 + 0.3333333333y + -1.111111111 + y2 = 0 + -1.111111111 Reorder the terms: 1.111111111 + -1.111111111 + 0.3333333333y + y2 = 0 + -1.111111111 Combine like terms: 1.111111111 + -1.111111111 = 0.000000000 0.000000000 + 0.3333333333y + y2 = 0 + -1.111111111 0.3333333333y + y2 = 0 + -1.111111111 Combine like terms: 0 + -1.111111111 = -1.111111111 0.3333333333y + y2 = -1.111111111 The y term is 0.3333333333y. Take half its coefficient (0.1666666667). Square it (0.02777777779) and add it to both sides. Add '0.02777777779' to each side of the equation. 0.3333333333y + 0.02777777779 + y2 = -1.111111111 + 0.02777777779 Reorder the terms: 0.02777777779 + 0.3333333333y + y2 = -1.111111111 + 0.02777777779 Combine like terms: -1.111111111 + 0.02777777779 = -1.08333333321 0.02777777779 + 0.3333333333y + y2 = -1.08333333321 Factor a perfect square on the left side: (y + 0.1666666667)(y + 0.1666666667) = -1.08333333321 Can't calculate square root of the right side. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 19x+13x+7x= | | 20x=2y+10 | | 48x^2-35=0 | | 9x^2-9=-131 | | -3+10=-4 | | (x+23)+(4x+17)+80=180 | | k^4-8=6p | | X+56=64 | | 4x+y+2z=14 | | ((X-3)/(x^2))=((x-3)/(x^2-1)) | | 6x^2+28x-2=0 | | 2(2x+4)=2x+9 | | 17-2=-3 | | 3(2x+6)=4x+3 | | 3(-3)-1/2y=2 | | 3z^2+3=6z | | 3z^2+3=6 | | x^2=725 | | 3(0)-1/2y=2 | | 3(-1)+2y=2 | | 3(-2)-1/2y=2 | | Y-5=0(x+2) | | 6(7x+5)=3x+7 | | 3(7)+Y=51 | | 1.06-3x=.71 | | 3(2x+4)=2(x+4) | | 3(2)-2y= | | 3(1)-2y=7 | | 3(0)-2y=7 | | (6x+1)+(5x+8)= | | 3(-1)+2y=7 | | 3(-2)+2y=7 |