If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3y+8-(-15+6y-)(-3y+2)-(5y+4)-29)=-5
We move all terms to the left:
-3y+8-(-15+6y-)(-3y+2)-(5y+4)-29)-(-5)=0
We add all the numbers together, and all the variables
-3y-(+6y)(-3y+2)-(5y+4)+8-29)-(-5)=0
We add all the numbers together, and all the variables
-3y-(+6y)(-3y+2)-(5y+4)=0
We get rid of parentheses
-3y-(+6y)(-3y+2)-5y-4=0
We multiply parentheses ..
-(-18y^2+12y)-3y-5y-4=0
We add all the numbers together, and all the variables
-(-18y^2+12y)-8y-4=0
We get rid of parentheses
18y^2-12y-8y-4=0
We add all the numbers together, and all the variables
18y^2-20y-4=0
a = 18; b = -20; c = -4;
Δ = b2-4ac
Δ = -202-4·18·(-4)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{43}}{2*18}=\frac{20-4\sqrt{43}}{36} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{43}}{2*18}=\frac{20+4\sqrt{43}}{36} $
| 9a+10=-14a+10 | | 25=9.25+g | | 19s=3s-208 | | 4(x-2)=2(x+1 | | -6g-5=-5g+2 | | 3x/4=150 | | 3w-15+20=20 | | y=(6.5)1.5-8 | | (2/(3x))=62 | | 3x/5-x=x/10-3/3 | | 2u+7+2u=7 | | x/22.5=7/5 | | 31/6x+9/4=10 | | m/22.5=7/5 | | 9x-10-7x=5(x+2) | | x+x-7+(x-7)-3=37 | | 200^x=1000 | | 20^x=1000 | | 5(r-1)=2(r-4-6 | | 2m-7=-5m | | x/1.6+5.9=-3.2 | | X^2+50=4x | | x/1.6+5.9=3.2 | | 2(3y-6)=18 | | 8n^2+30n-50=0 | | -9x+8+4x=-2x+5-3x+3 | | 9x-7+4x=x-3+12x-4 | | 7+1=43y | | 2(2x+3)+6x=7x-8+8x-1 | | 2r+1r=3 | | 2w+11=29 | | 140+.3x=60+.7x |