-3z+1=(2z+4)(3z-6)

Simple and best practice solution for -3z+1=(2z+4)(3z-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3z+1=(2z+4)(3z-6) equation:



-3z+1=(2z+4)(3z-6)
We move all terms to the left:
-3z+1-((2z+4)(3z-6))=0
We multiply parentheses ..
-((+6z^2-12z+12z-24))-3z+1=0
We calculate terms in parentheses: -((+6z^2-12z+12z-24)), so:
(+6z^2-12z+12z-24)
We get rid of parentheses
6z^2-12z+12z-24
We add all the numbers together, and all the variables
6z^2-24
Back to the equation:
-(6z^2-24)
We add all the numbers together, and all the variables
-3z-(6z^2-24)+1=0
We get rid of parentheses
-6z^2-3z+24+1=0
We add all the numbers together, and all the variables
-6z^2-3z+25=0
a = -6; b = -3; c = +25;
Δ = b2-4ac
Δ = -32-4·(-6)·25
Δ = 609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{609}}{2*-6}=\frac{3-\sqrt{609}}{-12} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{609}}{2*-6}=\frac{3+\sqrt{609}}{-12} $

See similar equations:

| 150+30x=420 | | 40−4y=39 | | 12k-15=3() | | 36+x^2=225 | | 6x+6x+6x=45 | | 14+5x=3(-x+-3)-11 | | a—8a—4a+11a+-15a=13 | | 8x−20=39 | | (3x-24)+x=180 | | 12k-15=3( | | Y=x+5x=10 | | 16x^2-64=120x | | 2z+-14z-9z+17z=12 | | 5b=225 | | 63=9x-2x | | -5x+10=11 | | 5(2x-8)=3(4x+6) | | (20)(x)=1540 | | 3(3y+1)=3(5y+2) | | 5x3-10=5 | | 2+3*4=x | | 10x+40=12x+18 | | 141+8+7x+12x=180 | | 5(2x–3)=80 | | 2x2+3x+4=0 | | 20x+40=25x+30 | | 9c+c-3c-2c-2c=9 | | 3(x+3)+4x=15-2×+3 | | 10q-20q-15q-6q=5 | | 16x-5x+14-6=48 | | (5x6−2x4+9x3+2x−4)−(7x5−8x4+2x−11)= | | 80=2(20+2x) |

Equations solver categories