-4(2x+9)3x=6-4(x-3)

Simple and best practice solution for -4(2x+9)3x=6-4(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(2x+9)3x=6-4(x-3) equation:



-4(2x+9)3x=6-4(x-3)
We move all terms to the left:
-4(2x+9)3x-(6-4(x-3))=0
We multiply parentheses
-24x^2-108x-(6-4(x-3))=0
We calculate terms in parentheses: -(6-4(x-3)), so:
6-4(x-3)
determiningTheFunctionDomain -4(x-3)+6
We multiply parentheses
-4x+12+6
We add all the numbers together, and all the variables
-4x+18
Back to the equation:
-(-4x+18)
We get rid of parentheses
-24x^2-108x+4x-18=0
We add all the numbers together, and all the variables
-24x^2-104x-18=0
a = -24; b = -104; c = -18;
Δ = b2-4ac
Δ = -1042-4·(-24)·(-18)
Δ = 9088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9088}=\sqrt{64*142}=\sqrt{64}*\sqrt{142}=8\sqrt{142}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-104)-8\sqrt{142}}{2*-24}=\frac{104-8\sqrt{142}}{-48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-104)+8\sqrt{142}}{2*-24}=\frac{104+8\sqrt{142}}{-48} $

See similar equations:

| 2j+8=-2j | | 6=9-m | | 9.46+2.6x=2.5+0.2x | | 10.00-w=0.87 | | 19d−16d=–9 | | -10c-8=10-7c-9c | | 21/4x6=x | | 9z=10z+1 | | 2x–6=–8 | | 6x–4=x–5 | | k2+6=23 | | 2x–6=–8. | | 2/3x+3/4=83/4 | | 2x²-3x+5x=180 | | 4×-3y=43 | | 104-u=225 | | x=1/4x+1/10x+108 | | 3/8x-1-4=1/2 | | (13x-5)+(9+9x)=180 | | 2(-8+2x+9)=12+18 | | -3(3-6x)=-99 | | 2/3x=3/4=35/4 | | {3}{2}x-5=7 | | -8+4w=-24 | | -7g=-5g+6 | | -5d-9=-6d | | -8=-14c | | 52+1.4x+100-1.6x=148 | | p^2-5p+17=p | | 2/3x=3/4=83/4 | | -8+2x+18=9+12 | | -j+10=-3j-4 |

Equations solver categories