-4(u+1)6u=2(u+2)-8

Simple and best practice solution for -4(u+1)6u=2(u+2)-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(u+1)6u=2(u+2)-8 equation:



-4(u+1)6u=2(u+2)-8
We move all terms to the left:
-4(u+1)6u-(2(u+2)-8)=0
We multiply parentheses
-24u^2-24u-(2(u+2)-8)=0
We calculate terms in parentheses: -(2(u+2)-8), so:
2(u+2)-8
We multiply parentheses
2u+4-8
We add all the numbers together, and all the variables
2u-4
Back to the equation:
-(2u-4)
We get rid of parentheses
-24u^2-24u-2u+4=0
We add all the numbers together, and all the variables
-24u^2-26u+4=0
a = -24; b = -26; c = +4;
Δ = b2-4ac
Δ = -262-4·(-24)·4
Δ = 1060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1060}=\sqrt{4*265}=\sqrt{4}*\sqrt{265}=2\sqrt{265}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{265}}{2*-24}=\frac{26-2\sqrt{265}}{-48} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{265}}{2*-24}=\frac{26+2\sqrt{265}}{-48} $

See similar equations:

| -4(u+4)=-9u-41 | | x+7+4=9 | | 2/7p-10=10 | | 48+2x+8=20+4 | | 2x+3/5+7=12 | | 1/2x-3=5+1/3x | | 100+10x=1000-70 | | 7(2r+2)=-98 | | r-0.3=0.7 | | 5x+7/3x-1=6 | | (x-1)(x-2)(x+3)(x+6)=72x^2 | | (2/7p)-10=10 | | 3x+127+4x+4=180 | | 4u+4(u+8)=-24 | | -3(8y+4)-7y=3(y-1)-1 | | 3(x-1)(x+3)=0 | | 9x-2=8x+8 | | 7m+1+6m=1 | | -0.4y=4 | | 3x+4x+6=9x2 | | 8=3x-411 | | 5x+5+2x=9 | | 3x-7=12-x | | 1/4(5/7-4x)-6/7=5/7 | | 3(x-2)+7=2-5(x+1) | | m-15=37 | | 3(u+4)=-4(5u-2)+5u | | -5(v-9)=6v+23 | | -4v+6(v-7)=-28 | | 7(x-3)-5(x2-1)=x2-5(x+2) | | 12−​5​​1​​r=2r+1 | | (x+10)+(2x-60)=180 |

Equations solver categories