-4(y-6)2y=2(y+8)

Simple and best practice solution for -4(y-6)2y=2(y+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(y-6)2y=2(y+8) equation:



-4(y-6)2y=2(y+8)
We move all terms to the left:
-4(y-6)2y-(2(y+8))=0
We multiply parentheses
-8y^2+48y-(2(y+8))=0
We calculate terms in parentheses: -(2(y+8)), so:
2(y+8)
We multiply parentheses
2y+16
Back to the equation:
-(2y+16)
We get rid of parentheses
-8y^2+48y-2y-16=0
We add all the numbers together, and all the variables
-8y^2+46y-16=0
a = -8; b = 46; c = -16;
Δ = b2-4ac
Δ = 462-4·(-8)·(-16)
Δ = 1604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1604}=\sqrt{4*401}=\sqrt{4}*\sqrt{401}=2\sqrt{401}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(46)-2\sqrt{401}}{2*-8}=\frac{-46-2\sqrt{401}}{-16} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(46)+2\sqrt{401}}{2*-8}=\frac{-46+2\sqrt{401}}{-16} $

See similar equations:

| 9u-5+2(2u+6)=-5(u+1) | | 15-9=30(x-1) | | -2(8-3x)=2x | | x-5/6x=-2/3 | | 7(x+9)=-28 | | 5x-8/18=2/3 | | 1/2n-3=1/4n+2 | | 26=u,2 | | -x+5=20-x¦ | | 2.3n+4.1=5.12+0.3n | | 2c-1/3=3 | | 102-4+2x=24+9x-21 | | 2(121/4+w)=431/8 | | 3/5(p+3)=8 | | -3k-2=40 | | -12+5x=28 | | (3/5)(p+3)=8 | | -23=-8x-7 | | (3x-1)^6=64 | | 29-4x=20 | | 2.5x-4.8=2.7 | | 25+8.50x=59.00 | | (x+2)(x+3)=(x+5)(x+1) | | 10+1/4x=15 | | -9(x-8)=6x+42 | | 2x-8=-2(x+2) | | 99+-y=9y+-27 | | x5+64x2=0 | | 2y=5y-5 | | 3x^2-12=9^2x | | (x)=(2-x)(x-9) | | 8x+9=4x+23= |

Equations solver categories