-4+4/5x-5/6x=-43/10

Simple and best practice solution for -4+4/5x-5/6x=-43/10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4+4/5x-5/6x=-43/10 equation:



-4+4/5x-5/6x=-43/10
We move all terms to the left:
-4+4/5x-5/6x-(-43/10)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We get rid of parentheses
4/5x-5/6x-4+43/10=0
We calculate fractions
7740x^2/300x^2+240x/300x^2+(-250x)/300x^2-4=0
We multiply all the terms by the denominator
7740x^2+240x+(-250x)-4*300x^2=0
Wy multiply elements
7740x^2-1200x^2+240x+(-250x)=0
We get rid of parentheses
7740x^2-1200x^2+240x-250x=0
We add all the numbers together, and all the variables
6540x^2-10x=0
a = 6540; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·6540·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*6540}=\frac{0}{13080} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*6540}=\frac{20}{13080} =1/654 $

See similar equations:

| 20=12+h | | 12x-(7x-8)=18 | | ×/x(x)-9-x-+1/x(x)-3x=-3/x(x)+3x | | -x+10+2x=-39 | | 5x-10=3x+7 | | -2y-11=13 | | 3(1-5x/2)+5x=2 | | 2(3c-4)-5=4c+3 | | 21-6x=-63 | | 3+6=-3(3x-3) | | -3/4x-1=115 | | 55x-11+2x=70 | | 5x-10=-32-3x | | 3x+22=66 | | 1+p/10=2 | | 2a-7a+3=6a+6 | | 42=-7(z-3)42= | | 10x(4x/2)=14 | | -14+10=-2(x+9) | | -34x-1=115 | | -6(18x-9)+13x=184 | | 32=3g+9 | | (13x+4)=141 | | 1-x-2x=13 | | Y-5y+16=0 | | 1=2.5x | | -5(x-3)-6=9 | | 32=12g | | 10-2x+5x=-11 | | w/4+8=37 | | 6+12a=28a | | 9x+5+10x+5=162 |

Equations solver categories