If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4+4x+x2=0
We add all the numbers together, and all the variables
x^2+4x-4=0
a = 1; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·1·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*1}=\frac{-4-4\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*1}=\frac{-4+4\sqrt{2}}{2} $
| 2(8x-10)=6(5-x) | | 7x+6+3x=26 | | 2x3-10x2-37x=0 | | -2x2-x+1=0 | | 2x2+5x-64=0 | | 3-4(2k-5)=17 | | 8(a+2)=2(2+3a) | | 3x2-x-7=0 | | 47(x−4)=4 | | 2y2-y-11=0 | | x^2-4x-91=5 | | 47(x−4)=4. | | X2-22x+480=0 | | 2x^2-16x=30 | | v(v-3)=-7-10v | | 33=3(w+4)+4 | | 1=5−2h | | x3/5=2 | | 33=3(w=4)+4 | | 3d(2d+5+3)=0 | | -3(1+6x)=-3x-39 | | 4r-6r=6 | | 8=2x-8 | | 12-4f=-2f-18 | | x+2=3x-x^2+5 | | 2+18n-1=14+17n | | -9h+16=-17h | | 4^(x^2+2)-(0.2)^(x^2+2)+8=0 | | 10d-10=10+2d+10d | | 2x^2-16+32=5 | | 2v-4-6=-8+4v | | 5h-8=-1h+4 |