If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+44.1t=0
a = -4.9; b = 44.1; c = 0;
Δ = b2-4ac
Δ = 44.12-4·(-4.9)·0
Δ = 1944.81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44.1)-\sqrt{1944.81}}{2*-4.9}=\frac{-44.1-\sqrt{1944.81}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44.1)+\sqrt{1944.81}}{2*-4.9}=\frac{-44.1+\sqrt{1944.81}}{-9.8} $
| x2=9x-14 | | -7(x-1)=8-4(6x-4) | | 2x+1/3+3x-1/5=1/10 | | 9f+7–6=-5+6f | | .05225x=3 | | -21+7+n=-9+16 | | -224=4q | | 3/4x=41/4 | | 3x-3=10x4 | | 14+5x=5x-2(x-5) | | 114+5y+16=180 | | -(5r+4)=5r+6(2-3r) | | 75=x+12 | | (3x+4)/2=9.5 | | 15=2(x+4)+-34 | | 3/2(k-3)=2/3(2k | | -69=-3-3n | | 9y^2+8y+211=0 | | -4(p-4)-2(p+6)=1-4p+p | | 10-2k=4k-10-4k | | 19=5-6x | | x+62=211 | | 18=-4x-6x-2 | | -10a-2=-6a+18 | | 8=–3m+1 | | 24e=312 | | 8-8r=4-7r | | 3=x/6-12 | | 120-23a=78 | | 4(p+6)=-8(p+6) | | 81x*81x+1=0 | | 325/x+1000=325/x+2500 |