If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-13t+4=0
a = -4.9; b = -13; c = +4;
Δ = b2-4ac
Δ = -132-4·(-4.9)·4
Δ = 247.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{247.4}}{2*-4.9}=\frac{13-\sqrt{247.4}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{247.4}}{2*-4.9}=\frac{13+\sqrt{247.4}}{-9.8} $
| 5x+3/3=2x-1/2 | | 2(4x+3)-2x=-x-7 | | Y(3y+5)=2 | | 3x^2-2x+17=22 | | (2x+5)-6=-10 | | X-(x(0.25))=50 | | 3(2x-4)-2x=x-12 | | x+2/6(11-x/3-1/4)=3x-4/12 | | -7-4(1-r)=-17+3r | | 4.2+3(4x+3)=-3-(3x+1.2) | | (6x+5)-2x=10 | | (2x+5)-6=10 | | 6x-2x+x=-12+12 | | 3x-2x-8=3x-5x+4 | | 21=112−i= | | 2x-6/x+6=6 | | 5y3(y+2=54 | | 2^4x+5=1/8 | | 4x-2x+12=x+13 | | 25x-5-13x+4=26x-5-14x+12 | | 2x+10-8x=17-16x+10x-7 | | 3g-12=9g14 | | -18+x=x+13 | | 5/2x+1/2x=4x+44/2+9/2x | | 4y-1+y+28=7y+30-5y | | x+3(x+11)=11 | | 8x-22=-1+x | | X+7x+7=55 | | 4(2x-3)+7=3x+5,x | | 3x-2=x/2+1 | | -7x/3=7x/2 | | (6x-7)/5-x=x/5+1.2 |