If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+13x+300=0
a = -4.9; b = 13; c = +300;
Δ = b2-4ac
Δ = 132-4·(-4.9)·300
Δ = 6049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{6049}}{2*-4.9}=\frac{-13-\sqrt{6049}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{6049}}{2*-4.9}=\frac{-13+\sqrt{6049}}{-9.8} $
| 13m+2m−m−4m=20 | | 12g-8g=4 | | 2c-10=4c+20 | | 7z-6z=15 | | 9w^2=4 | | 10p+5p-10p=15 | | 5b-5=3b+15b= | | 18v+6v-17v=7 | | 16r-15r=4 | | n^2+n-6480=80 | | 4b-50=-6 | | 15/5=x/2 | | 2x-4-3x+2=2-x-x | | 0,25(s)=9 | | -10t^2+50t+-35=0 | | 6x^2+7x-48=0 | | 9.5−4n=14+6n | | 3y+5)(y+2)=0 | | A=45*25^n | | 12=c-96 | | -4x+7=-6+17 | | 8=3r-4 | | x-75=-2(x-3) | | 8-4g=32 | | 8+c=-12 | | 3y=4y+5-2y | | 8-5v=27 | | 2x^2+13x+9=3 | | 2^x+3=12 | | 3(2x+1)=5(x–1) | | 8t-7=89 | | 6t-7=89 |