If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4/10z+4/7z=10/9
We move all terms to the left:
-4/10z+4/7z-(10/9)=0
Domain of the equation: 10z!=0
z!=0/10
z!=0
z∈R
Domain of the equation: 7z!=0We add all the numbers together, and all the variables
z!=0/7
z!=0
z∈R
-4/10z+4/7z-(+10/9)=0
We get rid of parentheses
-4/10z+4/7z-10/9=0
We calculate fractions
(-4900z^2)/5670z^2+(-2268z)/5670z^2+3240z/5670z^2=0
We multiply all the terms by the denominator
(-4900z^2)+(-2268z)+3240z=0
We add all the numbers together, and all the variables
(-4900z^2)+3240z+(-2268z)=0
We get rid of parentheses
-4900z^2+3240z-2268z=0
We add all the numbers together, and all the variables
-4900z^2+972z=0
a = -4900; b = 972; c = 0;
Δ = b2-4ac
Δ = 9722-4·(-4900)·0
Δ = 944784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{944784}=972$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(972)-972}{2*-4900}=\frac{-1944}{-9800} =243/1225 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(972)+972}{2*-4900}=\frac{0}{-9800} =0 $
| 48y-13+12y=72y-324y | | 9=(p-7)/3 | | 11n-9n+2n=12 | | 4(3x+10)=148 | | 3/5x+2/3=1/3x+6/5 | | Y-8=-3/5x | | 8x7=111- | | -5=3(x+3)+4x | | 2x/7+3x/5=31 | | -4/10z+4/7=10/9 | | (2/x^2)=0 | | 3(t-4)=5(2-t) | | 3x+10+9x−9+3x−16=180 | | 2x+64=20+5x | | 45=1+4x | | 5y-3.2=2y+2.8 | | 13j-3j+2j-9j+j=16 | | 0.2(-5.7+6x)=1.8x | | 0.2(-5.7+6x)=1.8 | | 3(x+2)=×+14 | | 5x−1=2 | | 2(x+4)=-1 | | 4p-7=2p | | 2(3y-7)=17 | | 3/5x=3/15 | | 10x-39=-7x+12 | | -4x+20=-8 | | 220x=0.85 | | 2d-11d=18 | | -4x=20=-8 | | 4=3(x-5)+1-2x | | 6(x+5)÷2=39 |