-4/3k-3/2k=-85/12

Simple and best practice solution for -4/3k-3/2k=-85/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4/3k-3/2k=-85/12 equation:



-4/3k-3/2k=-85/12
We move all terms to the left:
-4/3k-3/2k-(-85/12)=0
Domain of the equation: 3k!=0
k!=0/3
k!=0
k∈R
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
We get rid of parentheses
-4/3k-3/2k+85/12=0
We calculate fractions
1020k^2/72k^2+(-96k)/72k^2+(-108k)/72k^2=0
We multiply all the terms by the denominator
1020k^2+(-96k)+(-108k)=0
We get rid of parentheses
1020k^2-96k-108k=0
We add all the numbers together, and all the variables
1020k^2-204k=0
a = 1020; b = -204; c = 0;
Δ = b2-4ac
Δ = -2042-4·1020·0
Δ = 41616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{41616}=204$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-204)-204}{2*1020}=\frac{0}{2040} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-204)+204}{2*1020}=\frac{408}{2040} =1/5 $

See similar equations:

| 44/5+x=72/3 | | 20=-6v+8(v+2) | | 1,746m=28 | | 3(x-20)=20 | | 400-4x=56 | | 20=-6v+8(v+2 | | 25x^2-20x+4=27 | | 10x-27=x-45 | | 5^x+1=8^5-2x | | 17x−17=0 | | 3(w+3)-8w=279 | | x+4-x=7 | | 10x-27=×-45 | | 13x^2+48x-180=0 | | 3y+12=3(y-4) | | 54x−11=84x+1 | | 3x^2+48x-180=0 | | 53x+6=73x | | 13x^2-48x+180=0 | | 5(1-3m)=-25-5m | | -2x^2=-9x+9 | | x^2+5x-6=x^2+4x-12 | | 2x+1=x1 | | 23x−2=6 | | 4(7x-29)=80 | | 7x-3/x-1=4 | | 2.9m-3.1=2.6m+6.2 | | 0.08x+1.42=0.03x+1.12 | | 9x+50=3×-22 | | 11(4-6x)+5(13x=1)=9 | | 9x=2x^2+9 | | 1-4.7x+2.4=20.32 |

Equations solver categories