If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4/3x-2(9-1/3x)=-7/3x+9
We move all terms to the left:
-4/3x-2(9-1/3x)-(-7/3x+9)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3x+9)!=0We add all the numbers together, and all the variables
x∈R
-4/3x-2(-1/3x+9)-(-7/3x+9)=0
We multiply parentheses
-4/3x+2x-(-7/3x+9)-18=0
We get rid of parentheses
-4/3x+2x+7/3x-9-18=0
We multiply all the terms by the denominator
2x*3x-9*3x-18*3x-4+7=0
We add all the numbers together, and all the variables
2x*3x-9*3x-18*3x+3=0
Wy multiply elements
6x^2-27x-54x+3=0
We add all the numbers together, and all the variables
6x^2-81x+3=0
a = 6; b = -81; c = +3;
Δ = b2-4ac
Δ = -812-4·6·3
Δ = 6489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6489}=\sqrt{9*721}=\sqrt{9}*\sqrt{721}=3\sqrt{721}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-3\sqrt{721}}{2*6}=\frac{81-3\sqrt{721}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+3\sqrt{721}}{2*6}=\frac{81+3\sqrt{721}}{12} $
| 4(2+a)=36 | | 2/3(x-7)=10 | | 12=7(g-9)+12 | | 2m-6=12+2m | | 5+7x=280 | | 3z+11=29 | | 5000=x(x+100) | | -1/6x-3/6x=1/3 | | 85=7a+8 | | X-10y=6 | | n-7/3=13/3 | | 3z÷2=9 | | 5=y2 | | r/4=1 | | Y=(3x+1)/4x-1 | | 54=8c-18 | | I=450xx1.5 | | 4.3=6+0.2k | | 131+3x+2=180 | | 1/4(8x-8)=-10 | | 2x+2.5=-15 | | 4^3x-6=8^2x-4 | | g^2-19g+50=0 | | -25x-20x=10 | | 35=g^2-19g+85 | | -18=4(x-3)-6x | | 2x(3x-1)+4=2x-1 | | 150=2(25)+2w | | 90+90+128+x=360 | | -5w+24=9(w-4) | | 105+5x=360 | | 2x=7=53 |