If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4/7-8/35x+1/5x=-42
We move all terms to the left:
-4/7-8/35x+1/5x-(-42)=0
Domain of the equation: 35x!=0
x!=0/35
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
-8/35x+1/5x+42-4/7=0
We calculate fractions
(-3500x^2)/8575x^2+(-1960x)/8575x^2+1715x/8575x^2+42=0
We multiply all the terms by the denominator
(-3500x^2)+(-1960x)+1715x+42*8575x^2=0
We add all the numbers together, and all the variables
(-3500x^2)+1715x+(-1960x)+42*8575x^2=0
Wy multiply elements
(-3500x^2)+360150x^2+1715x+(-1960x)=0
We get rid of parentheses
-3500x^2+360150x^2+1715x-1960x=0
We add all the numbers together, and all the variables
356650x^2-245x=0
a = 356650; b = -245; c = 0;
Δ = b2-4ac
Δ = -2452-4·356650·0
Δ = 60025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{60025}=245$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-245)-245}{2*356650}=\frac{0}{713300} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-245)+245}{2*356650}=\frac{490}{713300} =7/10190 $
| {3}{5}x-27=24 | | 8/29=x/1490 | | 0.5yy=1.4 | | 99x^2-9=40-x^2=0 | | 3.25x+1=4.25x-2 | | 3(b+5)=3b-15 | | -20+x/4=9 | | 9k=-8+10k | | 12x+4=10x+8 | | -5(1+6p)=-215 | | 12x+4=10+8 | | 2n-6(5-2n)=-86 | | -n+9n=3-8-8n | | 3x+4(2x-4)=-39 | | -2x-x=x+5x=2x-3x+3x | | 20x+13x+3=17 | | c+3=-7-8c | | -2g=-8-g | | 7(4x-2)=7(5x-8) | | 2=3y-10+8 | | 9x+11–4x=x–5 | | 0.33x+10=1.61977519054 | | d-2d=4 | | m/2+5=11m=12 | | -4(8x+6)=-184 | | -5(1=6p)=-215 | | 3z÷10-6=-7 | | 1+n=9n-1 | | 13=9-u | | -7t+2=-6t | | 13x-14=15x+6 | | 63+4/5x=111 |