-4/m-3=-5/5-m

Simple and best practice solution for -4/m-3=-5/5-m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4/m-3=-5/5-m equation:



-4/m-3=-5/5-m
We move all terms to the left:
-4/m-3-(-5/5-m)=0
Domain of the equation: m!=0
m∈R
Domain of the equation: 5-m)!=0
We move all terms containing m to the left, all other terms to the right
-m)!=-5
m!=-5/1
m!=-5
m∈R
We add all the numbers together, and all the variables
-4/m-(-1m-1)-3=0
We get rid of parentheses
-4/m+1m+1-3=0
We multiply all the terms by the denominator
1m*m+1*m-3*m-4=0
We add all the numbers together, and all the variables
-2m+1m*m-4=0
Wy multiply elements
m^2-2m-4=0
a = 1; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*1}=\frac{2-2\sqrt{5}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*1}=\frac{2+2\sqrt{5}}{2} $

See similar equations:

| 7.01=2(3.14)(x) | | 11x²+8x-3=0 | | -4/(m-3)=-5/(5-m) | | -22-x/3=3 | | -(4x+2)-(-3x-3)=-7 | | 28n=-10 | | y=-1.4*4-1 | | y=-1.4*3-1 | | y=-1.4*2-1 | | 8=21t | | y=-1.4*1-1 | | x^2-10x+5=-10 | | 3z+57=69 | | 95m=-90 | | 90÷x=10 | | 20(0.3-x)(0.5-x)=0.6-x | | 20(0.3-x)(0.5-x)=0.6- | | 47=33t | | 49=2x+7 | | 23=3(7)+y | | 4^x=7*2^x+8 | | -3(4x+4)-2(2-14x)=3(8+5x) | | 7(7)-4=x | | 2^2=2x | | -3(4x+5)-2(6-11x)=3(4+3x) | | 15.7−2y=-1.9 | | 10/13x+1/3=3/7-3/13x+3/7 | | t=8/3M+26 | | (10/13)x+(1/3)=(3/7)-(3/13)x+(3/7) | | 15z+4=14+12z. | | 5.4x-3.2-5.3x=-0.9x-3.6 | | 7+10a=3+18a. |

Equations solver categories