-41/4x-75/8x=-190

Simple and best practice solution for -41/4x-75/8x=-190 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -41/4x-75/8x=-190 equation:



-41/4x-75/8x=-190
We move all terms to the left:
-41/4x-75/8x-(-190)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
-41/4x-75/8x+190=0
We calculate fractions
(-328x)/32x^2+(-300x)/32x^2+190=0
We multiply all the terms by the denominator
(-328x)+(-300x)+190*32x^2=0
Wy multiply elements
6080x^2+(-328x)+(-300x)=0
We get rid of parentheses
6080x^2-328x-300x=0
We add all the numbers together, and all the variables
6080x^2-628x=0
a = 6080; b = -628; c = 0;
Δ = b2-4ac
Δ = -6282-4·6080·0
Δ = 394384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{394384}=628$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-628)-628}{2*6080}=\frac{0}{12160} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-628)+628}{2*6080}=\frac{1256}{12160} =157/1520 $

See similar equations:

| (1500+0.5x)2=x | | 6x=9=3x-6 | | -5k-4=3k-8 | | 13x-21-44x=-51 | | j+7=25 | | 10(r+92)=-70 | | -7=12-d | | 8p+14=41 | | 175m-125m+47,750=50,250-200m | | 1/3(y+7)=3(y−1 | | x=7+6/11 | | (5x-4)/6=4x+1-(3x+10)/2 | | 8=11x-75 | | 3x-5=-1(1-7x) | | (x+23)+5x=180 | | 1500+0.5x=x | | (x-2+23)+6x=180 | | 42=3(4a)+6 | | (x23)+5x=90 | | 2/3(y-6)=-(y+2)+1 | | 10−2q=2 | | (x-23)+6x=90 | | -14x-23-15x=23 | | (x-23)+5x=90 | | 5j+30=2j-6 | | (x-23)+5x=180 | | 34=-x/4 | | (4w+8)+(2w+11)+(4w+4)+(4w+4)=360 | | 28x+52/12=4x+1 | | 4x-1+1=2x+14-2x | | 7t=12=2(t+6) | | 300=w×w3 |

Equations solver categories