-48+1x=-8(7+x)10x

Simple and best practice solution for -48+1x=-8(7+x)10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -48+1x=-8(7+x)10x equation:



-48+1x=-8(7+x)10x
We move all terms to the left:
-48+1x-(-8(7+x)10x)=0
We add all the numbers together, and all the variables
1x-(-8(x+7)10x)-48=0
We add all the numbers together, and all the variables
x-(-8(x+7)10x)-48=0
We calculate terms in parentheses: -(-8(x+7)10x), so:
-8(x+7)10x
We multiply parentheses
-80x^2-560x
Back to the equation:
-(-80x^2-560x)
We get rid of parentheses
80x^2+560x+x-48=0
We add all the numbers together, and all the variables
80x^2+561x-48=0
a = 80; b = 561; c = -48;
Δ = b2-4ac
Δ = 5612-4·80·(-48)
Δ = 330081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(561)-\sqrt{330081}}{2*80}=\frac{-561-\sqrt{330081}}{160} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(561)+\sqrt{330081}}{2*80}=\frac{-561+\sqrt{330081}}{160} $

See similar equations:

| m=1/2;(5,-20) | | 2x-21(-2/3)=13 | | 50+2x=59-1x | | 3x+2+7=14 | | a+2/5=9/10 | | 4=52/x | | 1÷5x-3=7 | | 42=−7(x−3) | | 3=t/3-1 | | -3x=(x)-3 | | X+.25(x)=248 | | x/12+6=9 | | -3x=xx-3 | | x/3+x/4+20-x=0 | | n^2-8n-75=9 | | 36p^2-16=0 | | x/3+x/4+20=x | | 3/4m=5/16 | | X+4-4x=-23 | | 1.26x=10.08 | | 29.88/5.31=x/5.9 | | 5x+6(1.1x)=6 | | −(x−11)(x+3)=0 | | n-2=1 | | 2(x+15=6 | | 8/5x=12/7 | | 7x+21=45+4x | | 7=x/8+1 | | p+11=14 | | 284=x+.25(x) | | (2x-3)^2=4x+5 | | (2x-2)+(x+1)+x+(x+1)=(2x-9)+(x+4)+(x+8)+x |

Equations solver categories