-4n(n-2)=6(n+3)-11n2

Simple and best practice solution for -4n(n-2)=6(n+3)-11n2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4n(n-2)=6(n+3)-11n2 equation:



-4n(n-2)=6(n+3)-11n^2
We move all terms to the left:
-4n(n-2)-(6(n+3)-11n^2)=0
We multiply parentheses
-(6(n+3)-11n^2)-4n^2+8n=0
We calculate terms in parentheses: -(6(n+3)-11n^2), so:
6(n+3)-11n^2
determiningTheFunctionDomain -11n^2+6(n+3)
We multiply parentheses
-11n^2+6n+18
Back to the equation:
-(-11n^2+6n+18)
We add all the numbers together, and all the variables
-4n^2-(-11n^2+6n+18)+8n=0
We get rid of parentheses
-4n^2+11n^2-6n+8n-18=0
We add all the numbers together, and all the variables
7n^2+2n-18=0
a = 7; b = 2; c = -18;
Δ = b2-4ac
Δ = 22-4·7·(-18)
Δ = 508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{508}=\sqrt{4*127}=\sqrt{4}*\sqrt{127}=2\sqrt{127}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{127}}{2*7}=\frac{-2-2\sqrt{127}}{14} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{127}}{2*7}=\frac{-2+2\sqrt{127}}{14} $

See similar equations:

| 6x-3=15x-30x= | | -4(-2r-8)=88 | | 7x=292 | | 3x+4x+472=180 | | 2x-4=-3x+14 | | 9+4x=3+8 | | 6x+24/11=0 | | 472+3x+4x=180 | | 4+5y=–1 | | 30=3b-9 | | 2x-4=-3+14 | | -4=2(8x | | b+185=−19. | | 8y/1=31 | | 3x-20=4x-40 | | .40n=36 | | 14=2c-8 | | 3(x-4)÷5=10 | | -5=4+2x | | 2x-3/5-x-7/3x=2x/5 | | 33x=5x | | (5/3)x+3=13 | | 6w−2(4+w)=w+7 | | 36=18.5x+x^2 | | 0.42g+3.36=2.52 | | (5x+4)=(-8x-2) | | 54=18.5x+x^2 | | -5f+3=12 | | 3x+6*2=2x+4*3 | | -2e-5=-7 | | 5(-5y+7)=135 | | 2/5d-4=8 |

Equations solver categories