If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4p^2+4p+224=0
a = -4; b = 4; c = +224;
Δ = b2-4ac
Δ = 42-4·(-4)·224
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-60}{2*-4}=\frac{-64}{-8} =+8 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+60}{2*-4}=\frac{56}{-8} =-7 $
| 4/x+5=3 | | 1+3x+3x=55 | | 3d-(d-4)=-2 | | 4/x+1=x+7 | | 5/2x+5=3 | | 26+3x=180 | | 4/x+5=9 | | 9+2x-5x=18 | | 101.4+d=99.2 | | 34=x+2x-2 | | 1.8=2.1h-5,7-4.6h | | t=-16t^2+60t+2 | | -2/5y-1/8y=840 | | 4x-4+5x=23 | | 10x+70=360 | | X÷y=37 | | -7x+1+6x=7 | | 8=93c | | 5+0.50x=x | | -4x+4+2x=-14 | | 8x+36.18=51.5 | | n/0.8=0.09/2 | | 123x+14+43(2x-19)=0 | | 12x-24=12 | | 1/2x+33=x | | 1+1x=x | | Nx$5.06=$506.00 | | -13=y+10 | | (x+10)=(3x-18) | | 0.5x+16=3.9 | | 5+0.50x=1 | | w/3-2.1=-6.9 |