If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4t(9t-170)=0
We multiply parentheses
-36t^2+680t=0
a = -36; b = 680; c = 0;
Δ = b2-4ac
Δ = 6802-4·(-36)·0
Δ = 462400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{462400}=680$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(680)-680}{2*-36}=\frac{-1360}{-72} =18+8/9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(680)+680}{2*-36}=\frac{0}{-72} =0 $
| -6-5p=p-2-7p | | x^2−x−12=0 | | 0.5b=2.3 | | 5x-7=4+-1 | | |8y-7|=12 | | 6(y-1)=3y+9 | | 6=a/7−3 | | 6(-7n+8)=-246 | | 3x^2-+8x-+1=0 | | 33x2+8x-1=0 | | 6=a7−3 | | -1-4x=-6x-15 | | -899=31v | | -4(-5x+3)=-192 | | 0=x+2/x-6 | | C=2y-43 | | -5+3(5p-8)=-89 | | 12c-4=14c-4 | | -2x+7=-3-x | | x2−x−12=0 | | 24-6w=7+5w24−6w=7+5w | | 5x^2-10x+1=1 | | 35(19+x)=50 | | 1.4z-0.5=3.2 | | (x+3)/7=4/8 | | 3z−6=6z−4z | | 3(m-2)^2-96=0 | | 3(x+7)=7+x | | -3+x^2/3=0 | | 6(1-5x)=28-8x | | f(2)=0.5^2 | | 7k-8(5k+6)=-246 |