If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4t^2+20t=0
a = -4; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-4)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-4}=\frac{-40}{-8} =+5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-4}=\frac{0}{-8} =0 $
| 3^x=9^x-^1.27^1-^3^x | | 2x=x/3-21 | | 2x+5(7x-3)=38 | | 3x-1x-5=47 | | 8^x+3=48 | | 3a-15=12 | | (3x+1)x(2x+5)=8 | | 8d=4(d+2) | | 17m=238 | | 52+(3x)=112 | | 0.24z=2.16 | | 3x(4+8)-8=28 | | 5n^2-51+54=0 | | (10+k)÷6=2 | | X^=-18-9x | | 3.25x=-55.25 | | 39x+3=41x-3 | | 3/4x-7=48 | | 6f-8f+7f=20 | | Y=0,3Y+140+500-2000i | | 0=8t(t)+5t+25 | | 15.12+0.05x=15.62+0.15x | | -1/2y+10+y=10 | | 5z+9=99 | | 500=3^n-1 | | 5s=s+15+ss= | | 7+22x=42+15x | | 5*0.6n+15=5*10+0.4n | | 50=x-4 | | x/3-×=-6 | | 7x-10=5x+22 | | 2+3b=-52 |