-4u(u+1)=2(1-2u)-6

Simple and best practice solution for -4u(u+1)=2(1-2u)-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4u(u+1)=2(1-2u)-6 equation:



-4u(u+1)=2(1-2u)-6
We move all terms to the left:
-4u(u+1)-(2(1-2u)-6)=0
We add all the numbers together, and all the variables
-4u(u+1)-(2(-2u+1)-6)=0
We multiply parentheses
-4u^2-4u-(2(-2u+1)-6)=0
We calculate terms in parentheses: -(2(-2u+1)-6), so:
2(-2u+1)-6
We multiply parentheses
-4u+2-6
We add all the numbers together, and all the variables
-4u-4
Back to the equation:
-(-4u-4)
We get rid of parentheses
-4u^2-4u+4u+4=0
We add all the numbers together, and all the variables
-4u^2+4=0
a = -4; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-4)·4
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*-4}=\frac{-8}{-8} =1 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*-4}=\frac{8}{-8} =-1 $

See similar equations:

| 5(3p-4)-5=6 | | 9m-(4m-8)=54 | | -1/5x+12=2/5x+6 | | (X+2)^2=x^2+4x+4 | | G(x)=x2+5x+-3 | | 6x+10+(-3x)=4x*10 | | |m-3|=8 | | 3c-15=-c | | 7−5+3x−1=4x+2 | | -8x-36=-5(1+8x)+x | | a+5=-18 | | n+153=-4+8 | | -3(3z-8)=2z-31 | | 4a-3=-55 | | (X+2)^2=x^2+4+4 | | 5r+9=-6 | | 8.50x=1,000+2.50x | | 5+10x=25 | | 5(x+8)=-37-6x | | 1/5x+12=2/5x+6 | | 5n-4=-2 | | b/6 = -2 | | 4r+2=42 | | -3(2x+18)=6 | | 3-3x=3(1-x) | | -5c=-40 | | -49(-3x-6)=108 | | 1/6y+2=-7 | | 9k=6=8k+13 | | 18y-14y=12. | | 8m-9m=5m+10m | | 5x+27=-×-3 |

Equations solver categories