-4v(13+4v)=-3(5-9v)+2

Simple and best practice solution for -4v(13+4v)=-3(5-9v)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4v(13+4v)=-3(5-9v)+2 equation:



-4v(13+4v)=-3(5-9v)+2
We move all terms to the left:
-4v(13+4v)-(-3(5-9v)+2)=0
We add all the numbers together, and all the variables
-4v(4v+13)-(-3(-9v+5)+2)=0
We multiply parentheses
-16v^2-52v-(-3(-9v+5)+2)=0
We calculate terms in parentheses: -(-3(-9v+5)+2), so:
-3(-9v+5)+2
We multiply parentheses
27v-15+2
We add all the numbers together, and all the variables
27v-13
Back to the equation:
-(27v-13)
We get rid of parentheses
-16v^2-52v-27v+13=0
We add all the numbers together, and all the variables
-16v^2-79v+13=0
a = -16; b = -79; c = +13;
Δ = b2-4ac
Δ = -792-4·(-16)·13
Δ = 7073
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-79)-\sqrt{7073}}{2*-16}=\frac{79-\sqrt{7073}}{-32} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-79)+\sqrt{7073}}{2*-16}=\frac{79+\sqrt{7073}}{-32} $

See similar equations:

| 68=9x-49 | | -(1-5c)=-11 | | 5y+2=25× | | 6+2x=72 | | 4x+2(-2x+3)=14 | | (0,1)^-3x+7=100 | | 32=-4x+2 | | 250m+10=90m+12 | | -6(7+3x)=30-6x | | x/6+x/6=1 | | 2a-8(a+4)=-2(4a-7) | | (3k+5)^2-45=0 | | 1.5=1.1^n | | 12+x/2=-10 | | 2x+x/2=30 | | 7-5n=-7n+1 | | 3x-2/2=6 | | 18+6(x–5)=3x+3(x+6) | | -15-5x=95 | | 100x^2+180x+91=0 | | -12q=18 | | 5x=-7+6x | | x+10=3x+15 | | (2-3x)/(4)=2x-1 | | 49x+7=42 | | 1.2×x=0.0023 | | 75-5•(2•6)=x | | |7t+6|+7=8 | | 5.8+x=7.95 | | 16+3(3x-4)=76 | | 80+10x=100+6x | | 6(1/2n-11)=2(n+8) |

Equations solver categories