-4x(4x-9)-x=-4(x-3)

Simple and best practice solution for -4x(4x-9)-x=-4(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(4x-9)-x=-4(x-3) equation:



-4x(4x-9)-x=-4(x-3)
We move all terms to the left:
-4x(4x-9)-x-(-4(x-3))=0
We add all the numbers together, and all the variables
-1x-4x(4x-9)-(-4(x-3))=0
We multiply parentheses
-16x^2-1x+36x-(-4(x-3))=0
We calculate terms in parentheses: -(-4(x-3)), so:
-4(x-3)
We multiply parentheses
-4x+12
Back to the equation:
-(-4x+12)
We add all the numbers together, and all the variables
-16x^2+35x-(-4x+12)=0
We get rid of parentheses
-16x^2+35x+4x-12=0
We add all the numbers together, and all the variables
-16x^2+39x-12=0
a = -16; b = 39; c = -12;
Δ = b2-4ac
Δ = 392-4·(-16)·(-12)
Δ = 753
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-\sqrt{753}}{2*-16}=\frac{-39-\sqrt{753}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+\sqrt{753}}{2*-16}=\frac{-39+\sqrt{753}}{-32} $

See similar equations:

| 2m-5m=12-21 | | 18/80x=1 | | 7^0.5x=528 | | x^2+2x-10=110 | | 8x-6-8=-4(-4+2x) | | 16+7m=5(2m+2) | | 1/8x-1/10x=1 | | x+13-23=28 | | b/6+5=5-3 | | C-6=8+3c | | c/4+7=5(3) | | (2t-3)^2=0 | | 4^x4^7=16^3+x | | m+1=2m-7 | | 12(x-2)+3x=(1/3)(x+12)+10x | | x*4=177 | | x*4=176 | | 5x-40=-40+5x | | 8(-7+4x)=6+x | | (-3-4i)-(-8+5i)=0 | | 35^x=30 | | -4x+2x-5=1 | | p-1/6=-1/2 | | 3x+5x+4+10-2x=26 | | 1x-6=22 | | 1x-23=4x+1 | | -50-8p=-6-7p | | -(7-x)(7+x)=0 | | (z/15)=(28/35) | | -6b-2b=16 | | (D^4-3D^3-6D^2+28D-24)y=0 | | x2+3x=10=(x+5) |

Equations solver categories