-4x(x+2)+x=3x-8-5x

Simple and best practice solution for -4x(x+2)+x=3x-8-5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(x+2)+x=3x-8-5x equation:



-4x(x+2)+x=3x-8-5x
We move all terms to the left:
-4x(x+2)+x-(3x-8-5x)=0
We add all the numbers together, and all the variables
-4x(x+2)+x-(-2x-8)=0
We add all the numbers together, and all the variables
x-4x(x+2)-(-2x-8)=0
We multiply parentheses
-4x^2+x-8x-(-2x-8)=0
We get rid of parentheses
-4x^2+x-8x+2x+8=0
We add all the numbers together, and all the variables
-4x^2-5x+8=0
a = -4; b = -5; c = +8;
Δ = b2-4ac
Δ = -52-4·(-4)·8
Δ = 153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{153}=\sqrt{9*17}=\sqrt{9}*\sqrt{17}=3\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{17}}{2*-4}=\frac{5-3\sqrt{17}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{17}}{2*-4}=\frac{5+3\sqrt{17}}{-8} $

See similar equations:

| 2(×+3)=9+x | | 1/b=12/3b+4 | | 10y-1=8.5y+1.5 | | -5r-3=18-2r | | 8x-4=4x+14 | | -2=k+10 | | 2(3x-4)=(1/2x-4 | | v/5-10=15 | | 4x+6x+130=180 | | 4+7p=3p+4 | | 2x-3=105 | | x=20.5+-0.5x | | 12x+1922x-9=180 | | 4/1=s/20 | | -3h-4=17 | | 9z+8=4z-7z | | 74+5x=-3x+54 | | 370=45x | | -112-4x=2x+68 | | 9x-7-5x=-27 | | 4x-3x-2x=-6+6-3 | | -112-4x=2x+6810 | | -108+6x=-5x+79 | | 3x-5/5-5x-7/6=x-2/3 | | -4/3x-1/2=21/6x-4 | | 7m=5m+0.5 | | 2=3x-4=4=1/2x-8 | | 16x+4+5x+10+60=180 | | 19-21+x=2x+610 | | 5x+10+16x+4+60=180 | | 3/1=d/12 | | 5x+10+60=180 |

Equations solver categories