-4x(x-1)=2(x-4)

Simple and best practice solution for -4x(x-1)=2(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(x-1)=2(x-4) equation:



-4x(x-1)=2(x-4)
We move all terms to the left:
-4x(x-1)-(2(x-4))=0
We multiply parentheses
-4x^2+4x-(2(x-4))=0
We calculate terms in parentheses: -(2(x-4)), so:
2(x-4)
We multiply parentheses
2x-8
Back to the equation:
-(2x-8)
We get rid of parentheses
-4x^2+4x-2x+8=0
We add all the numbers together, and all the variables
-4x^2+2x+8=0
a = -4; b = 2; c = +8;
Δ = b2-4ac
Δ = 22-4·(-4)·8
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{33}}{2*-4}=\frac{-2-2\sqrt{33}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{33}}{2*-4}=\frac{-2+2\sqrt{33}}{-8} $

See similar equations:

| 4(3p+2)-5(p-2)=-10 | | 3n-6+5n-9=-31 | | x/9+7=-1 | | 16x+7=17x+1 | | y2-6y-4+9=0 | | 4(x+6)-2x+10)=24 | | F(x)=3x^-10x+3 | | 3g+1=2g+3 | | -9=4u+7 | | 7(2x-8)+5x=58 | | 11z–9–10z+7=10 | | 132=12(3x+5) | | 75=(1.5+.25x)(50-5x) | | 1200.00x(30/90=400 | | 2x-x^=4 | | 12×4÷6-n+5=11 | | 3/b-3=0 | | 4x2+-6x+-2x-3=0 | | 4y-42=3y | | X^+2x=10 | | 56-20÷n×5+12=18 | | 5w-13=47 | | (-d-5)=1 | | 7w+19=13w | | 4x^+1=4x | | a/3+6=15 | | 5/​12=​8​/n​​ | | 7w=-33 | | 7/3x+1/2x=71/2+9/2x | | 5​/​12​​=​8​/​n​​ | | 5/3x+1/3x=102/3+7/3x | | 8x-1=81 |

Equations solver categories