If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x(x-2)+5x=4(x+2)-5x
We move all terms to the left:
-4x(x-2)+5x-(4(x+2)-5x)=0
We add all the numbers together, and all the variables
5x-4x(x-2)-(4(x+2)-5x)=0
We multiply parentheses
-4x^2+5x+8x-(4(x+2)-5x)=0
We calculate terms in parentheses: -(4(x+2)-5x), so:We add all the numbers together, and all the variables
4(x+2)-5x
We add all the numbers together, and all the variables
-5x+4(x+2)
We multiply parentheses
-5x+4x+8
We add all the numbers together, and all the variables
-1x+8
Back to the equation:
-(-1x+8)
-4x^2+13x-(-1x+8)=0
We get rid of parentheses
-4x^2+13x+1x-8=0
We add all the numbers together, and all the variables
-4x^2+14x-8=0
a = -4; b = 14; c = -8;
Δ = b2-4ac
Δ = 142-4·(-4)·(-8)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{17}}{2*-4}=\frac{-14-2\sqrt{17}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{17}}{2*-4}=\frac{-14+2\sqrt{17}}{-8} $
| x=18x/2 | | 3(4x+2)=15 | | 7-1/4x=2 | | x+7/6=5/18 | | h679988+6455786453=h | | 8.25/x=-0.25 | | 0.2x+1/10x-1=0.15-0.04 | | -(x-)+5=2(x+3)-1 | | -(x-)+5=2(x+3)-5 | | 4(x-7)=308 | | x÷5=25 | | 2x-15+4x+90°=180° | | (4w-2)(3-w)=0 | | 2y+3y=182y-3y=-6 | | 5x+4=-10x+3 | | 10x-5x+9=2x-3 | | (p+3)^2-p-15=0 | | x^2−14x+50=0 | | -2(4x-5)+3x=15 | | 6-2x+8=-30x | | 3(x+2)+1/2(3x-1)=-8 | | -4x+19=x-1 | | y+1/3=-12/3 | | 5(3x+2)=2(x+7)=55 | | x+6=5/2(x+20) | | 2x-2=-4x-24 | | 5(5-t)-(2-3t)=18 | | 84=(x+2)(x)(5) | | 4(-x+4)=7(2+x)-6 | | -2(x+4)-(4x+1)=-6x-9 | | 5x-3x-5+13=4 | | 3(x-2)-2x+5=x+11 |