-4x(x-5)+8x=7(x-1)

Simple and best practice solution for -4x(x-5)+8x=7(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(x-5)+8x=7(x-1) equation:



-4x(x-5)+8x=7(x-1)
We move all terms to the left:
-4x(x-5)+8x-(7(x-1))=0
We add all the numbers together, and all the variables
8x-4x(x-5)-(7(x-1))=0
We multiply parentheses
-4x^2+8x+20x-(7(x-1))=0
We calculate terms in parentheses: -(7(x-1)), so:
7(x-1)
We multiply parentheses
7x-7
Back to the equation:
-(7x-7)
We add all the numbers together, and all the variables
-4x^2+28x-(7x-7)=0
We get rid of parentheses
-4x^2+28x-7x+7=0
We add all the numbers together, and all the variables
-4x^2+21x+7=0
a = -4; b = 21; c = +7;
Δ = b2-4ac
Δ = 212-4·(-4)·7
Δ = 553
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{553}}{2*-4}=\frac{-21-\sqrt{553}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{553}}{2*-4}=\frac{-21+\sqrt{553}}{-8} $

See similar equations:

| w+5/12=1 | | w+5/13=1 | | 21y+98=180 | | 3x+2+2x-9=2x+5 | | 2x+15+7x+12+3x+9=180 | | 3n+5=54-9n | | 3x+9=-3x(x-3) | | 3x/18=5/3 | | (3d+7)=5+6d | | 8/48=4/x | | 7x+12=7+3x+9+2x+15=180 | | r-3.01=3.01 | | x/21=14/42 | | 8b-12=4.8 | | 2x+4(x-2)=3(2x-3) | | 1/2x-3=2x-6 | | 7x-15=3x+10+2x+9 | | x-12=23,x | | -4(3x+2)=40-6x | | 2x-(3x=8)=-5x-(-4x=10) | | x+x2^2​2​​+6x+4x2^2​2​​= | | -7x+11=x-5 | | 3x-14=-35 | | 3=2-5x | | 27+d=59 | | -1/2(4y-8)=3y+y-2 | | 2(1-2x=x-3 | | 8c−5c=9 | | 4^3b+1=4^2b+2 | | 1/2(4x-10=-7 | | 4^3b+1=4^2b+@ | | -160=2e/3-240 |

Equations solver categories