-4x+2000=1/4x+300

Simple and best practice solution for -4x+2000=1/4x+300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x+2000=1/4x+300 equation:



-4x+2000=1/4x+300
We move all terms to the left:
-4x+2000-(1/4x+300)=0
Domain of the equation: 4x+300)!=0
x∈R
We get rid of parentheses
-4x-1/4x-300+2000=0
We multiply all the terms by the denominator
-4x*4x-300*4x+2000*4x-1=0
Wy multiply elements
-16x^2-1200x+8000x-1=0
We add all the numbers together, and all the variables
-16x^2+6800x-1=0
a = -16; b = 6800; c = -1;
Δ = b2-4ac
Δ = 68002-4·(-16)·(-1)
Δ = 46239936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46239936}=\sqrt{64*722499}=\sqrt{64}*\sqrt{722499}=8\sqrt{722499}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6800)-8\sqrt{722499}}{2*-16}=\frac{-6800-8\sqrt{722499}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6800)+8\sqrt{722499}}{2*-16}=\frac{-6800+8\sqrt{722499}}{-32} $

See similar equations:

| 7.5=y-3 | | 3(3x+8)=26 | | -4x+2000 = 1/4x+300 | | 15x=200+0.2x | | 3(2m-6)=6 | | 10=0,1(4+16a) | | 42=3(5x-1) | | 10x+5=14x+7 | | 3(-4+a)=5a-(2a+3) | | 8x+3=-4+2x+25 | | (x)(25)(10)=10000 | | 3(1.5x+9)=-9 | | -14+5-3=x+6x+3x | | 5(x-6)-87=8x-3(x+7) | | 3x^2-10x-14=-x^2 | | 0.08(6x+4)=0.48(x+7)-3.04 | | 5x+4+4x=x | | 4x+5x+4=x | | 20=2x+25 | | 4x+4x=x | | 7y-2=y+2 | | 4x+8+4x=x | | 4x+7+4x=x | | x^2-0.3x+1=0 | | -6(4x-6)+5(5x-4)-2=3-6 | | 4x+8+4x+7=x | | -1=n-5/24 | | 4x+8+4x+7+4x=x | | 7x-4-8x-3=8x-9x-10 | | 9x+1=5x^2 | | 2*3x/2=0 | | 3(-4a-5)+6a=-25-4a |

Equations solver categories