-4x+24=3+1/2x

Simple and best practice solution for -4x+24=3+1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x+24=3+1/2x equation:



-4x+24=3+1/2x
We move all terms to the left:
-4x+24-(3+1/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-4x-(1/2x+3)+24=0
We get rid of parentheses
-4x-1/2x-3+24=0
We multiply all the terms by the denominator
-4x*2x-3*2x+24*2x-1=0
Wy multiply elements
-8x^2-6x+48x-1=0
We add all the numbers together, and all the variables
-8x^2+42x-1=0
a = -8; b = 42; c = -1;
Δ = b2-4ac
Δ = 422-4·(-8)·(-1)
Δ = 1732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1732}=\sqrt{4*433}=\sqrt{4}*\sqrt{433}=2\sqrt{433}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{433}}{2*-8}=\frac{-42-2\sqrt{433}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{433}}{2*-8}=\frac{-42+2\sqrt{433}}{-16} $

See similar equations:

| 1/3x+3=-3 | | 7(5x-5)-4x=-3x | | 8(8x-4)=608 | | -g+2)=-4(g+1) | | X2+-27x+162=0 | | -3/5y-1/7y=910 | | 2+4w=12+2w | | -59=6+5d | | 5(4c-7)=-33 | | 4(3n+1)=8(7n+5)+1 | | -5u+15.6=3.1 | | 1/2y+5=9 | | X-0.9x=2000 | | -6d-18=-15d+18 | | 810=729+9n | | x/10-25=-19 | | 5x=2(x-4.65)+2(x-4.65)+2x | | c-14=-40 | | 6(6g-4)=8(1-5g)=4g | | 6(2n+3)=6(9n+9)+2 | | 0=-4x(4x-5) | | 5/6-x=-1/6 | | 11(5x-8)=-638 | | -3j-(-4)/5-8=5.4 | | 3x=×+13 | | 2(x+4)+8=3x=8 | | 5x=2(x-4.65) | | 168=78+45n | | 19+17f=19f-15 | | 4(-7x+4)+5x=-1 | | 4(-x-3)=6(x+2)-4.5 | | 2x-4(x-5)=-8+5x-7 |

Equations solver categories