-4x+x=-6+1/5x

Simple and best practice solution for -4x+x=-6+1/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x+x=-6+1/5x equation:



-4x+x=-6+1/5x
We move all terms to the left:
-4x+x-(-6+1/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-4x+x-(1/5x-6)=0
We add all the numbers together, and all the variables
-3x-(1/5x-6)=0
We get rid of parentheses
-3x-1/5x+6=0
We multiply all the terms by the denominator
-3x*5x+6*5x-1=0
Wy multiply elements
-15x^2+30x-1=0
a = -15; b = 30; c = -1;
Δ = b2-4ac
Δ = 302-4·(-15)·(-1)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{210}}{2*-15}=\frac{-30-2\sqrt{210}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{210}}{2*-15}=\frac{-30+2\sqrt{210}}{-30} $

See similar equations:

| 0.17x=41 | | 9x-4x-2x+8=3x | | w+19=56 | | -10+8c=9c | | 4a-1-3a=a+7 | | y/7=1. | | 2x+4=7x-3 | | -11/4x+5=x+20/4 | | -5=(3/4x)-2 | | 3x-1=8-15 | | 76=f+53 | | 9k=8k+9 | | -4+x=x-4+5x | | 3x+4(x-2)=8x+5 | | -16-2p=-2(p+8) | | 2{x+4}=3x+5 | | 1/4(n+6)=10 | | p+p-14=p+50 | | -16-2p=-2(p | | 5x+9=8x+0 | | -(x+3+-x)=2x+7 | | 6x-22=(x+39)/2 | | -7+48=-8p+11 | | -36=3m | | 1750n=2400 | | -6N=-4s | | 12x-11=8x+9 | | m1=42+51 | | b/2+5b/6=4 | | 5(2t+3)=55 | | X+5-1/3(42+9*x)=-60 | | 12=x-88 |

Equations solver categories