-4x+x=6+1/5x

Simple and best practice solution for -4x+x=6+1/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x+x=6+1/5x equation:



-4x+x=6+1/5x
We move all terms to the left:
-4x+x-(6+1/5x)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-4x+x-(1/5x+6)=0
We add all the numbers together, and all the variables
-3x-(1/5x+6)=0
We get rid of parentheses
-3x-1/5x-6=0
We multiply all the terms by the denominator
-3x*5x-6*5x-1=0
Wy multiply elements
-15x^2-30x-1=0
a = -15; b = -30; c = -1;
Δ = b2-4ac
Δ = -302-4·(-15)·(-1)
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{210}}{2*-15}=\frac{30-2\sqrt{210}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{210}}{2*-15}=\frac{30+2\sqrt{210}}{-30} $

See similar equations:

| 12x+15=-10x-3 | | 20+34=27+m | | 18*x=4.5 | | 60n=4/5 | | 9n2-18n-27=0 | | 1.1x+0.4x=90 | | 2x+6x=1 | | 35b-19b=22+10 | | 2(m-4)+8=6.8 | | 45=60x | | 2x-20=2x+20 | | 360=12x(5) | | (3x-4)(5x+1)=0 | | n-7.2=11.1 | | -4x+77=61 | | 3(2x-4)-x=3x+6 | | 12=27n+3-18n | | 31/8-1/4p=13/8 | | 2x+90=x+15 | | 3(2x-4)-9x=3(4-x) | | 37/8-1/4p=37/8 | | 3(x-24)-2(3x-6)=2x-(7x-1) | | 5x-8=12+25 | | (19x)/6=120 | | (7x+2)(5×-4)=0 | | 0.65x=0.90 | | 2y-20=y+55 | | (1+u)(2u+5)=0 | | -15n+1=-14n-19 | | 1.55=14.1x | | 12n-8+13n=42 | | 1.55x=14.1 |

Equations solver categories