If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+12=0
a = -4; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-4)·12
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-4}=\frac{0-8\sqrt{3}}{-8} =-\frac{8\sqrt{3}}{-8} =-\frac{\sqrt{3}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-4}=\frac{0+8\sqrt{3}}{-8} =\frac{8\sqrt{3}}{-8} =\frac{\sqrt{3}}{-1} $
| -5/2x=1/3 | | 4s+104=180 | | 4x-1=-35 | | 2(x+4)=4×2(x-2)-2x | | 25+9z=45 | | 3x-7=4(12-3x) | | 2^x+2^x+1+2^x+2=112 | | 4(x=1)-93x+4 | | 4x-15=x+6 | | 4p+52=180 | | -5(-3x-7)=95 | | √3x+2√3=7√3 | | 9(2x-4)=-54 | | Y=1.3^x | | -(2/3)x=1 | | 2/3=3x/18 | | (y-2)-6y=-2(3y+2) | | -8+13x+4=12+9x | | 4x-08=4 | | 6t2-5t=0 | | v/3-2.1=-6.9 | | w/5=6.25 | | 40000=400x | | x+5/4=−4 | | 49/m=7 | | 18-2x-4x=60 | | 3/4x=2/1/4 | | -1=4+5y | | 2b−3=0 | | 2x–20=70–x | | 8x-2(4-3x)=5(x-4)-42 | | 3b−2=4 |