If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+x+5=0
a = -4; b = 1; c = +5;
Δ = b2-4ac
Δ = 12-4·(-4)·5
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-9}{2*-4}=\frac{-10}{-8} =1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+9}{2*-4}=\frac{8}{-8} =-1 $
| (x+1)(x-12)=5x | | 10x2+12=52 | | 26-5x=6 | | 2(3-4x)=5x-12 | | 8/x=1/8xx | | -4(x+6)-6=-18 | | -(-8q-23)=55 | | -(14-7d)=55 | | 39x+(120-x)×15=0 | | 2{y-7}=20 | | 0.25(8a-0.5)=7.5 | | 42a-0=84 | | | | | | | | | | -2/m=-3m/m | | 10x-70=70 | | 4x+10°=2x+40° | | m^-m-1/4=0 | | 9+2x=-10 | | 2x-1=16-x | | 8x^2-x+180=0 | | 4y=y15 | | x°+(x÷4)°=180 | | 3x/2+9=33/2 | | 4y-7/2y=9 | | -n+12=-6 | | 8x–6=-8x+10 | | 3(5m-7)-2(9-11)=4(8m-13)-17 | | 10x–10=6x+18 | | 15/11=8/x-6 |