If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2-52x-120=0
a = -4; b = -52; c = -120;
Δ = b2-4ac
Δ = -522-4·(-4)·(-120)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-28}{2*-4}=\frac{24}{-8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+28}{2*-4}=\frac{80}{-8} =-10 $
| -497=-7(-8x+7) | | 0.75x(2X-5)-0.4x(X-4)=2-(4X-17)/15 | | 8(c+7)=8(c-3) | | -3x-14=x+18 | | -6(3x-2)+2=-6 | | 520=10(-11x-3) | | -6-3(x+8)=3(2-2x) | | 520=10(-11x-3 | | 7r+7=47r+15 | | 45=-3-4p | | -4(x+2)+8=2(1–2x) | | 10(-5x+10)=-200 | | -x+37=3x+9 | | 5(y-3)=2y+6 | | -4(x+2)+8=2(1-2x) | | 5+20x=4(5x+3) | | X+3/4x=34 | | 0.8(2x+5)−4=1 | | 4/5(2x+5)−4=1 | | 45(2x+5)−4=1 | | B-(1-2b)+(b-3)=0 | | 4x+3=-47 | | 1/2x+5x+x=100 | | x2-2x+49=0 | | 3(7x6+4)+19=1 | | 7x+33=3x+13 | | 2(a+2)+2=-10 | | 2(x+3) =4(2x–3) | | X²-5x-6=0 | | 3x–15=21–5x | | 19=-4m-5 | | 10p+9-11-p=-2(2p+4)-3(2p-2 |