-4x=(x-1)(x+7)

Simple and best practice solution for -4x=(x-1)(x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x=(x-1)(x+7) equation:



-4x=(x-1)(x+7)
We move all terms to the left:
-4x-((x-1)(x+7))=0
We multiply parentheses ..
-((+x^2+7x-1x-7))-4x=0
We calculate terms in parentheses: -((+x^2+7x-1x-7)), so:
(+x^2+7x-1x-7)
We get rid of parentheses
x^2+7x-1x-7
We add all the numbers together, and all the variables
x^2+6x-7
Back to the equation:
-(x^2+6x-7)
We add all the numbers together, and all the variables
-4x-(x^2+6x-7)=0
We get rid of parentheses
-x^2-4x-6x+7=0
We add all the numbers together, and all the variables
-1x^2-10x+7=0
a = -1; b = -10; c = +7;
Δ = b2-4ac
Δ = -102-4·(-1)·7
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8\sqrt{2}}{2*-1}=\frac{10-8\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8\sqrt{2}}{2*-1}=\frac{10+8\sqrt{2}}{-2} $

See similar equations:

| 14x+18=(5x+20)+(12x-26) | | 0.4x-10=-2.6x+14 | | 6x+5-2x=4-4x+1 | | 2y=8= | | -2(-8w+4)-2w=4(w-2)-8 | | 8x-4=2x+9=6x | | 6+-6=e | | 12k-8k=-53 | | 4n/4=54 | | 20x+2=14x+8 | | 2/8z=-8 | | 8-10x=-31 | | 8=2w= | | 12d^2-5d-8=-5 | | 5x+12+3x+9=61 | | 13c=-520 | | 55(25)(x)=2585 | | 4w-w-2=19 | | 6+0.90x=1.50x | | -22x+15+19=56 | | 8-10k=-31 | | x+3/2=52 | | {7}y7+6=11 | | 2-9v=47 | | |7n|=28 | | 8x=-69 | | 40.26=27.66+4x | | -2-5k+2k=-38 | | 78=-2(2x-5) | | 46-8x=19+x | | 2.5x+6=360 | | /18x=504 |

Equations solver categories