-4y-3=(12y-9)8y

Simple and best practice solution for -4y-3=(12y-9)8y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4y-3=(12y-9)8y equation:



-4y-3=(12y-9)8y
We move all terms to the left:
-4y-3-((12y-9)8y)=0
We calculate terms in parentheses: -((12y-9)8y), so:
(12y-9)8y
We multiply parentheses
96y^2-72y
Back to the equation:
-(96y^2-72y)
We get rid of parentheses
-96y^2-4y+72y-3=0
We add all the numbers together, and all the variables
-96y^2+68y-3=0
a = -96; b = 68; c = -3;
Δ = b2-4ac
Δ = 682-4·(-96)·(-3)
Δ = 3472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3472}=\sqrt{16*217}=\sqrt{16}*\sqrt{217}=4\sqrt{217}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-4\sqrt{217}}{2*-96}=\frac{-68-4\sqrt{217}}{-192} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+4\sqrt{217}}{2*-96}=\frac{-68+4\sqrt{217}}{-192} $

See similar equations:

| a=15.71*2 | | 17^2=(x+7)^2+(x)^2 | | 15.71*2=a | | x+0.1x=1 | | 17^2=(x+7)^2+(x)^3 | | 5/2x+1/4x=44/4x | | x*0,6x=9,8 | | 200=0.15t+30 | | 2c+36-4c/9=72 | | 2x+1/4=24 | | 3x–4=16 | | 3a+16°=180° | | (2x+16)=(4x+14) | | 2x-4x=6x+16 | | 0.5y=y/2 | | 35y-42+21=24 | | X-3=18-x | | 15/x=1/3 | | 2-3x=4+5x | | (2x+5)2=9 | | X+3=3-2x | | Y=0.15t+30 | | X-3×(58-2x)=148 | | –30x=–2.700 | | X-6x=322 | | 3x-4+5x=6 | | 4y×5=69 | | 15/x=18/54 | | 4y+5=69 | | 10p=12+-1 | | y=1500(8)-25000 | | (15/x)=(18/54) |

Equations solver categories