-5((x)/(15)-16-30)=50-(1)/(3)x

Simple and best practice solution for -5((x)/(15)-16-30)=50-(1)/(3)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5((x)/(15)-16-30)=50-(1)/(3)x equation:



-5((x)/(15)-16-30)=50-(1)/(3)x
We move all terms to the left:
-5((x)/(15)-16-30)-(50-(1)/(3)x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-5(x/15-46)-(-1/3x+50)=0
We multiply parentheses
-5x-(-1/3x+50)+230=0
We get rid of parentheses
-5x+1/3x-50+230=0
We multiply all the terms by the denominator
-5x*3x-50*3x+230*3x+1=0
Wy multiply elements
-15x^2-150x+690x+1=0
We add all the numbers together, and all the variables
-15x^2+540x+1=0
a = -15; b = 540; c = +1;
Δ = b2-4ac
Δ = 5402-4·(-15)·1
Δ = 291660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291660}=\sqrt{4*72915}=\sqrt{4}*\sqrt{72915}=2\sqrt{72915}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(540)-2\sqrt{72915}}{2*-15}=\frac{-540-2\sqrt{72915}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(540)+2\sqrt{72915}}{2*-15}=\frac{-540+2\sqrt{72915}}{-30} $

See similar equations:

| 6x(3-4x)=-x(5x-1) | | -8)+p=10 | | 67x5= | | 7×+21y=(×+) | | 3+2(m-4)=14 | | 8×2n+²=16 | | 0.5x+3=0.75x7.75 | | 3(n-5=21 | | 19y-(15-y)=-275 | | 3x-50=103x | | 15+5(x-2)=5 | | 17x^2+17=-8x+5+11x^2 | | 3p-5=21 | | 65+30x=35+45x | | 4x+2x+x+8=8× | | y2-13=87 | | C+8=b | | a2=0 | | 2z2=50 | | b2-169=0 | | x2-1=10 | | -9*1a= | | h2-12=24 | | 3x-4=-2x-4 | | 3y-5/4=4 | | -18+p=10 | | 3s+5=0 | | 2z+16=12 | | X²+10x=1 | | 5e^2+9e=-4 | | (4x-8)^2+2(4x-8)+1=0 | | X=100+2y |

Equations solver categories