-5(-4v+4)-v=7(v-1)-3

Simple and best practice solution for -5(-4v+4)-v=7(v-1)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(-4v+4)-v=7(v-1)-3 equation:


Simplifying
-5(-4v + 4) + -1v = 7(v + -1) + -3

Reorder the terms:
-5(4 + -4v) + -1v = 7(v + -1) + -3
(4 * -5 + -4v * -5) + -1v = 7(v + -1) + -3
(-20 + 20v) + -1v = 7(v + -1) + -3

Combine like terms: 20v + -1v = 19v
-20 + 19v = 7(v + -1) + -3

Reorder the terms:
-20 + 19v = 7(-1 + v) + -3
-20 + 19v = (-1 * 7 + v * 7) + -3
-20 + 19v = (-7 + 7v) + -3

Reorder the terms:
-20 + 19v = -7 + -3 + 7v

Combine like terms: -7 + -3 = -10
-20 + 19v = -10 + 7v

Solving
-20 + 19v = -10 + 7v

Solving for variable 'v'.

Move all terms containing v to the left, all other terms to the right.

Add '-7v' to each side of the equation.
-20 + 19v + -7v = -10 + 7v + -7v

Combine like terms: 19v + -7v = 12v
-20 + 12v = -10 + 7v + -7v

Combine like terms: 7v + -7v = 0
-20 + 12v = -10 + 0
-20 + 12v = -10

Add '20' to each side of the equation.
-20 + 20 + 12v = -10 + 20

Combine like terms: -20 + 20 = 0
0 + 12v = -10 + 20
12v = -10 + 20

Combine like terms: -10 + 20 = 10
12v = 10

Divide each side by '12'.
v = 0.8333333333

Simplifying
v = 0.8333333333

See similar equations:

| -2+-x^2=0 | | 24+4a+6a-5= | | 3a-9b=12 | | 2(3t-1)+13=4(t-1)-(3t+2) | | 7+3x-3+5x=-3+13x | | 3x/4+2/4=3/7 | | 15x^2-x^4=0 | | 3*24/5*4/5= | | 0.08*x+0.04*y=1440 | | -3(3x+3)=-81 | | 4a-9a+2=-8 | | 5x*2+18=3 | | 9x+5=1x-3 | | 24-3x=-6 | | x+5+2=16 | | 9-4*1*13= | | 12x+7+14x-8=21x-5+3x+5 | | 5(t+14)=60 | | 3x+4y-2x+6y= | | 4w-7k=28fork | | .3a=60 | | 0.765x+0.06(0.765x)= | | -5-5x(-9)= | | x(.7)+14(.10)=(14+x).5 | | -(x+2)+3(4+x)= | | 5(3x+15)=55 | | x+(x+1)+3+x(x+1)-3[x+(x+1)]+12= | | -10=-4-3x | | 2x-3=17+4x | | 11x^2-X^2=0 | | 10=3j | | 5(x-3)=110 |

Equations solver categories