-5(2x+1)=-3x(1+4x)

Simple and best practice solution for -5(2x+1)=-3x(1+4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(2x+1)=-3x(1+4x) equation:



-5(2x+1)=-3x(1+4x)
We move all terms to the left:
-5(2x+1)-(-3x(1+4x))=0
We add all the numbers together, and all the variables
-5(2x+1)-(-3x(4x+1))=0
We multiply parentheses
-10x-(-3x(4x+1))-5=0
We calculate terms in parentheses: -(-3x(4x+1)), so:
-3x(4x+1)
We multiply parentheses
-12x^2-3x
Back to the equation:
-(-12x^2-3x)
We get rid of parentheses
12x^2+3x-10x-5=0
We add all the numbers together, and all the variables
12x^2-7x-5=0
a = 12; b = -7; c = -5;
Δ = b2-4ac
Δ = -72-4·12·(-5)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-17}{2*12}=\frac{-10}{24} =-5/12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+17}{2*12}=\frac{24}{24} =1 $

See similar equations:

| r-67=17 | | 3p+15=-7p-17 | | 5a+9=-4a-18 | | -3x-20=-x-28 | | 38f^2-25f=0 | | 20x+45=16x-57 | | n-1/5=13 | | 9x-56=-3x+40 | | 12x+24=-10x+46 | | 2n+3n=4;-n+2=5 | | –2x+19=9 | | .9x-x+5x=260 | | a-27=35 | | 4(y+20)=16 | | .8(5x+2)=27 | | 4c+16=20 | | -87=x-12 | | 2.71=c-0.8 | | 74=x-26 | | 7=d/7 | | 19w^2-30w+8=-6w^2 | | 9(-3r11)r=10 | | 3.14(25)(h)=1,256 | | 2.71=c−0.8 | | 3.5(2.25+x)=14x= | | –2x+4(3x–2)=32 | | 6x^2+6x=1 | | x-500=0 | | 78=3f | | 2x=¼ | | 8a–10=6a+36 | | 8h+5-3h=8h+-4 |

Equations solver categories