-5(3x-4)=29/8x

Simple and best practice solution for -5(3x-4)=29/8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(3x-4)=29/8x equation:



-5(3x-4)=29/8x
We move all terms to the left:
-5(3x-4)-(29/8x)=0
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-5(3x-4)-(+29/8x)=0
We multiply parentheses
-15x-(+29/8x)+20=0
We get rid of parentheses
-15x-29/8x+20=0
We multiply all the terms by the denominator
-15x*8x+20*8x-29=0
Wy multiply elements
-120x^2+160x-29=0
a = -120; b = 160; c = -29;
Δ = b2-4ac
Δ = 1602-4·(-120)·(-29)
Δ = 11680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11680}=\sqrt{16*730}=\sqrt{16}*\sqrt{730}=4\sqrt{730}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-4\sqrt{730}}{2*-120}=\frac{-160-4\sqrt{730}}{-240} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+4\sqrt{730}}{2*-120}=\frac{-160+4\sqrt{730}}{-240} $

See similar equations:

| u-67/2=9 | | 6m+3-4m=10m+3 | | 9(11-4y)-5y=17 | | 88=j/9+97 | | 6m+3-4m=10m+3 | | t/3-7=2 | | -3m+15=51-3m | | 6m^2+5m-6=0 | | s/8-1=2 | | 9(2k-23)=11k+14 | | 6m^2+5m-6^=0 | | 8(j-85)=64 | | 385+20x=460+15x | | 10n-15=5(2n+4) | | 96=-3(3-5n) | | 89=1/2(0.3t)^2 | | 21+8b=93 | | g/9+42=48 | | 3/5x=-99 | | 4=18+2x | | 7x-11=2x+47 | | 3+7r=4(7+8r) | | 89=1/2(0.3)t^2 | | 4(m+3=-32 | | 20=c/3+16 | | m+61=39 | | -3(-9x+1)-8x=4(x-4)-5 | | 6b-3=b+7 | | w/8+29=35 | | 20 = c3+ 16 | | 2(4x-7)+3x=52 | | 9=1/2(0.3)t^2 |

Equations solver categories