-5(t-4)-(t+3)=4

Simple and best practice solution for -5(t-4)-(t+3)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(t-4)-(t+3)=4 equation:


Simplifying
-5(t + -4) + -1(t + 3) = 4

Reorder the terms:
-5(-4 + t) + -1(t + 3) = 4
(-4 * -5 + t * -5) + -1(t + 3) = 4
(20 + -5t) + -1(t + 3) = 4

Reorder the terms:
20 + -5t + -1(3 + t) = 4
20 + -5t + (3 * -1 + t * -1) = 4
20 + -5t + (-3 + -1t) = 4

Reorder the terms:
20 + -3 + -5t + -1t = 4

Combine like terms: 20 + -3 = 17
17 + -5t + -1t = 4

Combine like terms: -5t + -1t = -6t
17 + -6t = 4

Solving
17 + -6t = 4

Solving for variable 't'.

Move all terms containing t to the left, all other terms to the right.

Add '-17' to each side of the equation.
17 + -17 + -6t = 4 + -17

Combine like terms: 17 + -17 = 0
0 + -6t = 4 + -17
-6t = 4 + -17

Combine like terms: 4 + -17 = -13
-6t = -13

Divide each side by '-6'.
t = 2.166666667

Simplifying
t = 2.166666667

See similar equations:

| -40z-0.4=-50z+1.1 | | 3f=-1.2 | | 3(5x+1)-10=12x+2 | | 2x^2-7x+15=0 | | Y=2mx+5b | | 0.2x=0.4 | | ln(4x+9)=ln(3x-1) | | y=(2cos^2x-1)+sin^2x | | 24p-16p= | | x^6-18=0 | | 7(9x+5y)= | | y=cos(2x)+sin^2x | | 41t=9 | | 16x+9(x+1)=25(x+1)-16 | | 9(x+8)=5+9x | | 9x^2-18xy+5y=0 | | 4a^2+3a-27=0 | | 2(2z-4)=3(z+4) | | -9x+x=-24 | | 12z^2+7z-12=0 | | o=x^2+8x-5 | | 36+5t=9 | | 4(3-x)+5(1+x)=3(x-1) | | 8x+3+4x+7= | | 6x^2+7x-7=0 | | y=-1(-2x-2) | | =-4.9t^2+30.5t+8.5 | | 32=-9w | | 7x-3=2(x+1)+5x-5 | | -y=2x+2 | | X^2+12X=-1 | | X^12+12X=-1 |

Equations solver categories