-5(x+2)=(-5X+1)X

Simple and best practice solution for -5(x+2)=(-5X+1)X equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(x+2)=(-5X+1)X equation:



-5(x+2)=(-5x+1)x
We move all terms to the left:
-5(x+2)-((-5x+1)x)=0
We multiply parentheses
-5x-((-5x+1)x)-10=0
We calculate terms in parentheses: -((-5x+1)x), so:
(-5x+1)x
We multiply parentheses
-5x^2+x
Back to the equation:
-(-5x^2+x)
We get rid of parentheses
5x^2-x-5x-10=0
We add all the numbers together, and all the variables
5x^2-6x-10=0
a = 5; b = -6; c = -10;
Δ = b2-4ac
Δ = -62-4·5·(-10)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{59}}{2*5}=\frac{6-2\sqrt{59}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{59}}{2*5}=\frac{6+2\sqrt{59}}{10} $

See similar equations:

| 5x-14=2x+54 | | 5x-14=2x+554 | | (x-30)=540 | | 5x-7-3x=x-5 | | 11x-(7x-4)=32 | | -7x+6x=5 | | 4c+c=-7c | | h+6=12-5h | | -16(r-8)=4(r+62) | | 2y/5=26/30 | | -4(1+4x)-3x=3(-7x+10) | | 1.05x=37,800 | | -9/10x-3=3/5 | | 8-9x=21x-1 | | 60+40d=20d | | c/9=-2/3 | | 2-5a-8=-6 | | x+5=2=x-3 | | 20=x+2x+ | | 7x-3=4x+17 | | 20+4h=8h | | 10y-3=2y+1 | | (2p+1.5)1.15=11.5 | | 35-8x=43-7x | | 4(x+2)-8×=-2-6x+6 | | -6+4x=6x | | 3x-7+5x=8x+7 | | 5x+2+25x-8=9 | | 3x-5+2x-x+10=8 | | 8p+29=p+16 | | 6(x-2)/8=3(x+4)/10 | | 10x+15-7=5(5x+10) |

Equations solver categories