If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -5 + -1(15y + -1) = 2(7y + -16) * y Reorder the terms: -5 + -1(-1 + 15y) = 2(7y + -16) * y -5 + (-1 * -1 + 15y * -1) = 2(7y + -16) * y -5 + (1 + -15y) = 2(7y + -16) * y Combine like terms: -5 + 1 = -4 -4 + -15y = 2(7y + -16) * y Reorder the terms: -4 + -15y = 2(-16 + 7y) * y Reorder the terms for easier multiplication: -4 + -15y = 2y(-16 + 7y) -4 + -15y = (-16 * 2y + 7y * 2y) -4 + -15y = (-32y + 14y2) Solving -4 + -15y = -32y + 14y2 Solving for variable 'y'. Combine like terms: -15y + 32y = 17y -4 + 17y + -14y2 = -32y + 14y2 + 32y + -14y2 Reorder the terms: -4 + 17y + -14y2 = -32y + 32y + 14y2 + -14y2 Combine like terms: -32y + 32y = 0 -4 + 17y + -14y2 = 0 + 14y2 + -14y2 -4 + 17y + -14y2 = 14y2 + -14y2 Combine like terms: 14y2 + -14y2 = 0 -4 + 17y + -14y2 = 0 Begin completing the square. Divide all terms by -14 the coefficient of the squared term: Divide each side by '-14'. 0.2857142857 + -1.214285714y + y2 = 0 Move the constant term to the right: Add '-0.2857142857' to each side of the equation. 0.2857142857 + -1.214285714y + -0.2857142857 + y2 = 0 + -0.2857142857 Reorder the terms: 0.2857142857 + -0.2857142857 + -1.214285714y + y2 = 0 + -0.2857142857 Combine like terms: 0.2857142857 + -0.2857142857 = 0.0000000000 0.0000000000 + -1.214285714y + y2 = 0 + -0.2857142857 -1.214285714y + y2 = 0 + -0.2857142857 Combine like terms: 0 + -0.2857142857 = -0.2857142857 -1.214285714y + y2 = -0.2857142857 The y term is -1.214285714y. Take half its coefficient (-0.607142857). Square it (0.3686224488) and add it to both sides. Add '0.3686224488' to each side of the equation. -1.214285714y + 0.3686224488 + y2 = -0.2857142857 + 0.3686224488 Reorder the terms: 0.3686224488 + -1.214285714y + y2 = -0.2857142857 + 0.3686224488 Combine like terms: -0.2857142857 + 0.3686224488 = 0.0829081631 0.3686224488 + -1.214285714y + y2 = 0.0829081631 Factor a perfect square on the left side: (y + -0.607142857)(y + -0.607142857) = 0.0829081631 Calculate the square root of the right side: 0.287937776 Break this problem into two subproblems by setting (y + -0.607142857) equal to 0.287937776 and -0.287937776.Subproblem 1
y + -0.607142857 = 0.287937776 Simplifying y + -0.607142857 = 0.287937776 Reorder the terms: -0.607142857 + y = 0.287937776 Solving -0.607142857 + y = 0.287937776 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.607142857' to each side of the equation. -0.607142857 + 0.607142857 + y = 0.287937776 + 0.607142857 Combine like terms: -0.607142857 + 0.607142857 = 0.000000000 0.000000000 + y = 0.287937776 + 0.607142857 y = 0.287937776 + 0.607142857 Combine like terms: 0.287937776 + 0.607142857 = 0.895080633 y = 0.895080633 Simplifying y = 0.895080633Subproblem 2
y + -0.607142857 = -0.287937776 Simplifying y + -0.607142857 = -0.287937776 Reorder the terms: -0.607142857 + y = -0.287937776 Solving -0.607142857 + y = -0.287937776 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.607142857' to each side of the equation. -0.607142857 + 0.607142857 + y = -0.287937776 + 0.607142857 Combine like terms: -0.607142857 + 0.607142857 = 0.000000000 0.000000000 + y = -0.287937776 + 0.607142857 y = -0.287937776 + 0.607142857 Combine like terms: -0.287937776 + 0.607142857 = 0.319205081 y = 0.319205081 Simplifying y = 0.319205081Solution
The solution to the problem is based on the solutions from the subproblems. y = {0.895080633, 0.319205081}
| (y+4)=5Y | | 3a-5=2(4a-9) | | 5(x-2)=4(2x+5) | | 3+2(k+1)=3k+6 | | 2a+3x-3a+7xy+6a-2b= | | 4p^2-6p+1=0 | | 30=20+2r | | 9(I+2)=3(I-2) | | 7(g-2)=5(g+4) | | 6n-7=5n+8 | | 102-3x=15x+18 | | 102-3x=15x | | 2x+10=-90-8x | | 13-10x=112-31x | | 111-4x=4x+7 | | 0-6x=7-7x | | 16x-16y= | | 13-10x=112-3x | | 108-5x=9x+24 | | -59-10x=9x+17 | | 2x+7=43-2 | | 3x+6=-104-8x | | 4x-5=14-115 | | -19x-2x=11-7x | | 7a+5b+7c=36 | | 5x+25=14x-47 | | -19x-2x=11-20 | | 50-3x=7x+20 | | 6y=12-2y+4 | | 7x-1=9-5x | | .5(4x-6)=11 | | 3y=0.144 |